2025/10/31 18:44 1/10 OpenSSL CA on Ubuntu server 20.04

OpenSSL CA on Ubuntu server 20.04

OpenSSL is a free, open-source library that you can use for digital certificates. One of the things you
can do is build your own CA (Certificate Authority).

A CA is an entity that signs digital certificates. An example of a well-known CA is Verisign. Many
websites on the Internet use certificates for their HTTPS connections that were signed by Verisign.

Besides websites and HTTPS, there are some other applications/services that can use digital
certificates. For example:

¢ VPNs: instead of using a pre-shared key you can use digital certificates for authentication.
e Wireless: WPA 2 enterprise uses digital certificates for client authentication and/or server
authentication using PEAP or EAP-TLS.

Instead of paying companies like Verisign for all your digital certificates. It can be useful to build your
own CA for some of your applications. In this lesson, you will learn how to create your own CA.

Configuration

In this example, | will use an Ubuntu server. The OpenSSL configuration will be similar as on other
distributions like CentOS.

Prerequisites

Before we configure OpenSSL, Set the correct hostname/FQDN correctly and make sure that time,
date and timezone are correct.

$ hostname
ca

The hostname is “ca”. Let's check the FQDN:

$ hostname -f
ca

It's also “ca”. Let's change the FQDN; you need to edit the following file for this:

$ sudo vim /etc/hosts
#Change the following line:

127.0.1.1 ca
#To:
127.0.1.1 ca.example.local ca

Let’s verify the hosthame and FQDN again:

Eureka Moment - https://wiki.plecko.hr/

Last update: 2022/02/02 11:03 linux:ubuntu:ca https://wiki.plecko.hr/doku.php?id=linux:ubuntu:ca

$ hostname
ca

$ hostname -f
ca.example.local

The hostname and FQDN is looking good.

Change timezone

$ sudo timedatectl

Local time: Wed -02-02 09:36: UTC
Universal time: Wed -02-02 09:36: UTC
RTC time: Wed -02-02 09:

Time zone: Etc/UTC (UTC, +0000
System clock synchronized: yes
NTP service: active
RTC local TZ: no
$ sudo timedatectl set-timezone Europe/Zagreb
$ sudo timedatectl

Local time: Wed -02-02 :38: CET
Universal time: Wed -02-02 09:38: UTC
RTC time: Wed -02-02 09:

Time zone: Europe/Zagreb (CET, +0100
System clock synchronized: yes
NTP service: active
RTC local TZ: no

$

Time and date could be configured manually, but it is a better idea to use NTP. You can synchronize
the time/date with this command:

$ sudo vim /etc/systemd/timesyncd.conf
uncomment and modify line: #NTP=
Time
NTP=hr.pool.ntp.org
#save the file
$ sudo timedatectl set-ntp off
$ sudo timedatectl set-ntp on
$ sudo systemctl status systemd-timesyncd
® systemd-timesyncd.service - Network Time Synchronization
Loaded: loaded (/lib/systemd/system/systemd-timesyncd.service; enabled;
vendor preset: enabled

Active: active (running) since Wed -02-02 :42:04 CET; 15s ago
Docs: man:systemd-timesyncd.service
Main PID: systemd-timesyn

Status: "Initial synchronization to time server 162.159.200.1:123
(hr.pool.ntp.org)."

Tasks: limit:

Memory: 1.4M

CGroup: /system.slice/systemd-timesyncd.service

https://wiki.plecko.hr/ Printed on 2025/10/31 18:44

2025/10/31 18:44

3/10 OpenSSL CA on Ubuntu server 20.04

L
Feb 02 :42:04 ca
Feb 02 :42:04 ca
Feb 02 :42:04 ca

server 162.159.200.

$

lib/systemd/systemd-timesyncd

systemd : Starting Network Time Synchronization...
systemd : Started Network Time Synchronization.
systemd-timesyncd : Initial synchronization to
1: hr.pool.ntp.org

OpenSSL Configuration

OpenSSL uses a configuration file that is easy to read. There are a couple of things that we will

change in it:

vim /usr/lib/ssl

openssl.cnf

Look for the following section

CA default

dir = ./demoCA

#And change it, so it looks like this:

CA default

dir =

root/ca

#Also, find and uncomment:
copy extensions = copy
#Be careful with the copy extensions

The “/root/ca” folder is where we will store our private keys and certificates.

You might also want to take a look at the default policy:

policy match

countryName = match
stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

Some fields like country, state/province, and organization have to match. If you are building your CA
for a lab environment like | am then you might want to change some of these values:

policy match
countryName

stateOrProvinceName

match
optional

Eureka Moment - https://wiki.plecko.hr/

Last update: 2022/02/02 11:03 linux:ubuntu:ca https://wiki.plecko.hr/doku.php?id=linux:ubuntu:ca

organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

I've changed it so that only the country name has to match.

Root CA

The first thing we have to do is to create a root CA. This consists of a private key and root certificate.
These two items are the “identity” of our CA.

Let’s switch to the root user:

$ sudo su

We will create a new folder which stores all keys and certificates:
$ mkdir /root/ca

In this new folder we have to create some additional sub-folders:

$ cd /root/ca
$ mkdir newcerts certs crl private requests

We also require two files. The first one is called “index.txt”. This is where OpenSSL keeps track of all
signed certificates:

$ touch index.txt

The second file is called “serial”. Each signed certificate will have a serial number. | will start with
number 1234:

$ echo '1234' serial
All folders and files are in place. Let's generate the root private key:

$ openssl genrsa -aes256 -out private/cakey.pem

Generating RSA private key, bit long modulus
ot

.................. ++

e 1is 0x10001

Enter pass phrase private/cakey.pem:

Verifying - Enter pass phrase private/cakey.pem:

The root private key that | generated is 4096 bit and uses AES 256 bit encryption. It is stored in the
private folder using the “cakey.pem” filename.

https://wiki.plecko.hr/ Printed on 2025/10/31 18:44

2025/10/31 18:44 5/10 OpenSSL CA on Ubuntu server 20.04

| Anyone that has the root private key will be able to create
&% trusted certificates. Keep this file secure!

We can now use the root private key to create the root certificate:

openssl req -new -x509 -key /root/ca/private/cakey.pem -out cacert.pem -
days 3650 -set serial 0

Enter pass phrase root/ca/private/cakey.pem:

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name letter code) [AUJ:HR

State or Province Name (full name) [Some-Statel:Croatia

Locality Name (eg, city :Zagreb

Organization Name (eg, company Internet Widgits Pty Ltd]:Example
Organizational Unit Name (eg, section

Common Name (e.g. server FQDN or YOUR name :CA.example. local

Email Address :admin@cexample. local

The root certificate will be saved as the “cacert.pem” filename and is valid for 10 years. If
“cacert.pem” is renamed to “cacert.crt”, you can import it to windows trusted root store

Create a certificate - short and with conf and DNS alt names

config.txt

[req]

default bits = 4096
prompt = no

default md = sha256

req _extensions = req_ext
distinguished name = dn

[dn]

countryName=HR
stateOrProvinceName=Croatia
localityName=Zagreb
organizationName=Company
emailAddress=person@example.com
commonName=fqdn

[req ext]

Eureka Moment - https://wiki.plecko.hr/

https://wiki.plecko.hr/doku.php?do=export_code&id=linux:ubuntu:ca&codeblock=17

Last update: 2022/02/02 11:03 linux:ubuntu:ca https://wiki.plecko.hr/doku.php?id=linux:ubuntu:ca

subjectAltName=@alt names

[alt names]
DNS.1=fqdnl
DNS.2=fqdn2

generate key
openssl genrsa -aes256 -out pwd.key
apache will ask key password on each service restart, so you can
remove the password
openssl rsa -in pwd.key -out pwdPASSWORDLESS.key
generate CSR using the config file
openssl req -new -key pwd.key -out pwd.csr -sha256 -config cat config.txt

check id DNS entry is present

openssl req -noout -text -in pwd.csr | grep DNS:
sign the CSR

openssl ca -in pwd.csr -out pwd.pem

check DNS entry is present signed certificate
openssl x509 -noout -text -in pwd.pem | grep DNS:
Combine the full chain you can't specify each file separately)

cat {pwd.pem,cacert.pem, pwdPASSWORDLESS.key} > starCOMBINED.pem

Create a certificate

Our root CA is now up and running. Normally when you want to install a certificate on a device (a web
server for example), then the device will generate a CSR (Certificate Signing Request). This CSR is
created by using the private key of the device.

On our CA, we can then sign the CSR and create a digital certificate for the device.

Another option is that we can do everything on our CA. We can generate a private key, CSR and then
sign the certificate...everything “on behalf” of the device.

That’s what | am going to do in this example; it's a good way to test if your CA is working as expected.
I'll generate a private key, CSR and certificate for an imaginary “web server”.

Let’s use the requests folder for this:
$ cd /root/ca/requests
First, we have to generate a private key:

$ openssl genrsa -aes256 -out some serverkey.pem
Generating RSA private key, bit long modulus

https://wiki.plecko.hr/ Printed on 2025/10/31 18:44

2025/10/31 18:44 7/10 OpenSSL CA on Ubuntu server 20.04

e is 0x10001
Enter pass phrase some_server.pem:
Verifying - Enter pass phrase some_server.pem:

The private key will be 2048 bit and uses AES 256 bit encryption. With the private key, we can create
a CSR:

root@ca:~/ca/requests# openssl req -new -key some serverkey.pem -out
some server.csr

Enter pass phrase some_serverkey.pem:

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name letter code) [AUJ:HR

State or Province Name (full name) [Some-Statel:Croatia

Locality Name (eg, city :Zagreb

Organization Name (eg, company) [Internet Widgits Pty Ltd|:Example
Organizational Unit Name (eg, section

Common Name (e.g. server FQDN or YOUR name :some_server.example. local
Email Address :admincexample. local

Please enter the following 'extra' attributes
to be sent with your certificate request

A challenge password

An optional company name

Now we can sign the CSR that we just created:

$ openssl ca -in some server.csr -out some server.pem
Using configuration from /usr/lib/ssl/openssl.cnf
Enter pass phrase root/ca/private/cakey.pem:
Check that the request matches the signature
Signature ok

Certificate Details:

Serial Number: 0x1234
Validity
Not Before: Apr 09:08: GMT
Not After : Apr 09:08: GMT
Subject:
countryName = HR
stateOrProvinceName = Croatia
organizationName = Example
commonName = some_server.example.local
emailAddress = admincexample.local

X509v3 extensions:
X509v3 Basic Constraints:
CA:FALSE

Eureka Moment - https://wiki.plecko.hr/

Last update: 2022/02/02 11:03 linux:ubuntu:ca https://wiki.plecko.hr/doku.php?id=linux:ubuntu:ca

Netscape Comment:
OpenSSL Generated Certificate
X509v3 Subject Key Identifier:

tA7:7A:41:3E:3F:B3:EE:0D:CF:46:D0:A7:A5:9B:46:92:D1:F0O:AD
X509v3 Authority Key Identifier:
keyid:1B:38:B6:9F:82:46:72:5A:04:07:76:C2:DA:A5:5D: EB:
Certificate is to be certified Apr 09:08: GMT days

Sign the certificate? |y/nl:y

out of 1 certificate requests certified, commit? |[y/nly
Write out database with new entries
Data Base Updated

That's all there is to it. The “some_server.pem” file is the signed digital certificate for our web server.
If you want you can delete the CSR, move the private key to the “private” folder, and move the new
certificate to the “certs” folder:

$ rm some server.csr
$ mv some serverkey.pem /root/ca/private
$ mv some server.pem /root/ca/certs

The “some_server.pem” certificate can now be installed on your web server.

Security

Protecting your CA is important. Anyone that has access to the private key of the CA will be able to
create trusted certificates.

One of the things you should do is reducing the permissions on the entire /root/ca folder so that only
our root user can access it:

$ chmod -R root/ca

In this example, we used the root CA to sign the certificate of an imaginary web server directly. This is
fine for a lab environment but for a production network, you should use an intermediate CA.

The intermediate CA is another server that signs certificates on behalf of the root CA.

The root CA signs the certificate of the intermediate CA. You can then take the root CA offline which
reduces the chance of anyone getting their hands on your root private key.

Verification

We created some private keys and generated some certificates. Let’s take a closer look at some of
our work.

https://wiki.plecko.hr/ Printed on 2025/10/31 18:44

2025/10/31 18:44 9/10 OpenSSL CA on Ubuntu server 20.04

Here's the index.txt file:

$ cat /root/ca/index.txt
v 1704010908597 unknown

C=HR/ST=Croatia/O=Example/CN=some server.example.local/emailAddress=admince
xample.local

Above you can see the certificate that we created for our web server. It also shows the serial number
that | stored in the serial file. The next certificate that we sign will get another number:

$ cat /root/ca/serial

Let’s take a closer look at the certificates. We can verify them with OpenSSL, but it might be nice to
see them on your computer. I'll use a Windows computer for this.

Windows doesn’t recognize the .PEM file extension so you might want to rename your certificates to
.CRT.

Here's the root certificate: You can see the name of our root CA and the validity (10 years). If we want
to trust certificates that are signed by our root CA, then we’ll have to install this certificate. Here’s
how:

1. Hit the Install Certificate button and you will see this wizard:
1. It's up to you if you want to install it for your current user or the entire computer. Click
Next to continue:
2. Make sure you select the Trusted Root Certification Authorities store and click Next and Finish:
3. Windows will give you one more big security warning, click Yes to continue:
4. The root certificate is now installed and trusted.

Now open the certificate that we assigned to “some server”; You can see that it was issued by our
root CA, it's valid for one year. When you look at the certification path then you can see that Windows
trusts the certificate. If a web server would present this certificate to your computer, then it will trust
it from now on.

If you use a service that doesn't accept separate certificate files (like HaProxy; unlike Apache), you
have to create a full chain certificate file (cat everything into a single file: site cert, ca cert, site key).

Conclusion

You have now learned how to build your own CA using OpenSSL and are ready to sign certificates for
your servers, routers, firewalls, clients or any other devices that you have.

I hope you enjoyed this lesson. If you have any questions feel free to ask in our forum.

Eureka Moment - https://wiki.plecko.hr/

Last update: 2022/02/02 11:03 linux:ubuntu:ca https://wiki.plecko.hr/doku.php?id=linux:ubuntu:ca

From:
https://wiki.plecko.hr/ - Eureka Moment

Permanent link:
https://wiki.plecko.hr/doku.php?id=linux:ubuntu:ca

Last update: 2022/02/02 11:03

https://wiki.plecko.hr/ Printed on 2025/10/31 18:44

https://wiki.plecko.hr/
https://wiki.plecko.hr/doku.php?id=linux:ubuntu:ca

	OpenSSL CA on Ubuntu server 20.04
	Configuration
	Prerequisites
	OpenSSL Configuration
	Root CA
	Create a certificate - short and with conf and DNS alt names
	Create a certificate
	Security
	Verification
	Conclusion

