Managing everything in Active Directory via
C# (Using
System.DirectoryServices.AccountManageme
nt)

Before .Net, managing Active Directory objects was a bit lengthy and you needed a good knowledge
on the principal store to have your head around on what you want to do. We ususally use the
System.DirectoryServices namespace but with .Net 3.5 they introduced
System.DirectoryServices.AccountManagement which is manages directory objects independent of
the System.DirectoryServices namespace.

So what are the advantages of using this? Everything is really simple in terms of managing a user,
computer or group principal and performing queries on the stores are much faster thanks to the Fast
Concurrent Bind (FSB) feature which caches the connection which decreases the number of ports
used in the process.

The code is divided into several regions but here are the 5 key regions with their methods explained

Validate Methods

ValidateCredentials - This Method will validate the users credentials.
IsUserExpired - Checks if the User Account is Expired.
IsUserExisiting - Checks if user exsists on AD.

IsAccountLocked - Checks if user account is locked

Search Methods

e GetUser - This will return a UserPrincipal Object if the User Exists

User Account Methods

SetUserPassword - This Method will set the Users Password
EnableUserAccount - This Method will Enable a User Account
DisableUserAccount - This Methoid will Disable the User Account
ExpireUserPassword - This Method will Force Expire a Users Password
UnlockUserAccount - This Method will unlocks a User Account
CreateNewUser - This Method will Create a new User Directory Object
DeleteUser - This Method will Delete an AD User based on Username.

Group Methods

e CreateNewGroup - This Method will create a New Active Directory Group
e AddUserToGroup - This Method will add a User to a group

Eureka Moment - https://wiki.plecko.hr/

Last update: 2019/10/31 09:05 windows:ad:ad.net https://wiki.plecko.hr/doku.php?id=windows:ad:ad.net

e RemoveUserFromGroup - This Method will remove a User from a Group
e IsUserGroupMember - This Method will Validate whether the User is a Memeber of a Group
e GetUserGroups - This Method will return an ArrayList of a User Group Memberships

Helper Methods

e GetPrincipalContext - Gets the base principal context

System

System.Collections

System.Text
System.DirectoryServices.AccountManagement
System.Data

System.Configuration

class ADMethodsAccountManagement

#region Variables

string sDomain "test.com"

string sDefaultOU "OU=Test Users,0U=Test,DC=test,DC=com"
string sDefaultRootOU "DC=test,DC=com"

string sServiceUser @"ServiceUser"

string sServicePassword "ServicePassword"

#endregion
#region Validate Methods

/77
/17
///
///
///
/77

///
///
///
/77
/77

<summary>
Validates the username and password of a given user
</summary>
<param name="sUserName">The username to validate</param>
<param name="sPassword">The password of the username to validate</param>
<returns>Returns True of user 1is valid</returns>

bool ValidateCredentials(string sUserName, string sPassword

PrincipalContext oPrincipalContext = GetPrincipalContext
oPrincipalContext.ValidateCredentials(sUserName, sPassword

<summary>
Checks if the User Account is Expired
</summary>
<param name="sUserName">The username to check</param>
<returns>Returns true if Expired</returns>

bool IsUserExpired(string sUserName

UserPrincipal oUserPrincipal = GetUser(sUserName

https://wiki.plecko.hr/ Printed on 2025/10/18 23:31

2025/10/18 23:31 3/10 Managing everything in Active Directory via C# (Using System.DirectoryServices.AccountManagement)

if (oUserPrincipal.AccountExpirationDate != null)
{
return false;
}
else
{
return true;
}

}

/// <summary>

/// Checks if user exsists on AD

/// </summary>

/// <param name="sUserName">The username to check</param>
/// <returns>Returns true if username Exists</returns>
public bool IsUserExisiting(string sUserName)

{
1T (GetUser(sUserName) == null)
{
return false;
}
else
{
return true;
}
}

/// <summary>

/// Checks if user accoung is locked

/// </summary>

/// <param name="sUserName">The username to check</param>
/// <returns>Retruns true of Account is locked</returns>
public bool IsAccountLocked(string sUserName)

{
UserPrincipal oUserPrincipal = GetUser(sUserName) ;
return oUserPrincipal.IsAccountLockedOut();

}

#endregion

#region Search Methods

/// <summary>

/// Gets a certain user on Active Directory

/// </summary>

/// <param name="sUserName">The username to get</param>
/// <returns>Returns the UserPrincipal Object</returns>
public UserPrincipal GetUser(string sUserName)

{

PrincipalContext oPrincipalContext = GetPrincipalContext();

UserPrincipal oUserPrincipal =

Eureka Moment - https://wiki.plecko.hr/

Last update: 2019/10/31 09:05 windows:ad:ad.net https://wiki.plecko.hr/doku.php?id=windows:ad:ad.net

UserPrincipal.FindByIdentity(oPrincipalContext, sUserName
oUserPrincipal

/// <summary>

/// Gets a certain group on Active Directory

/// </summary>

/// <param name="sGroupName">The group to get</param>

/// <returns>Returns the GroupPrincipal Object</returns>
GroupPrincipal GetGroup(string sGroupName

PrincipalContext oPrincipalContext = GetPrincipalContext

GroupPrincipal oGroupPrincipal
GroupPrincipal.FindByIdentity(oPrincipalContext, sGroupName
oGroupPrincipal

#endregion
#region User Account Methods

/// <summary>
/// Sets the user password
/// </summary>
/// <param name="sUserName">The username to set</param>
/// <param name="sNewPassword">The new password to use</param>
/// <param name="sMessage">Any output messages</param>
void SetUserPassword(string sUserName, string sNewPassword,
string sMessage

UserPrincipal oUserPrincipal = GetUser(sUserName
oUserPrincipal .SetPassword(sNewPassword
sMessage o

Exception ex

sMessage ex.Message

/// <summary>

/// Enables a disabled user account

/// </summary>

/// <param name="sUserName">The username to enable</param>
void EnableUserAccount(string sUserName

UserPrincipal oUserPrincipal = GetUser(sUserName

https://wiki.plecko.hr/ Printed on 2025/10/18 23:31

2025/10/18 23:31 5/10 Managing everything in Active Directory via C# (Using System.DirectoryServices.AccountManagement)

oUserPrincipal .Enabled = true;
oUserPrincipal .Save();

}

/// <summary>

/// Force disbaling of a user account

/// </summary>

/// <param name="sUserName">The username to disable</param>
public void DisableUserAccount(string sUserName)

{
UserPrincipal oUserPrincipal = GetUser(sUserName) ;
oUserPrincipal .Enabled = false;
oUserPrincipal .Save();

¥

/// <summary>

/// Force expire password of a user

/// </summary>

/// <param name="sUserName">The username to expire the password</param>
public void ExpireUserPassword(string sUserName)

{
UserPrincipal oUserPrincipal = GetUser(sUserName) ;
oUserPrincipal.ExpirePasswordNow() ;
oUserPrincipal .Save();

}

/// <summary>

/// Unlocks a locked user account

/// </summary>

/// <param name="sUserName">The username to unlock</param>
public void UnlockUserAccount(string sUserName)

{
UserPrincipal oUserPrincipal = GetUser(sUserName);
oUserPrincipal.UnlockAccount();
oUserPrincipal .Save();

}

/// <summary>

/// Creates a new user on Active Directory

/// </summary>

/// <param name="sOU">The 0OU location you want to save your user</param>
/// <param name="sUserName">The username of the new user</param>

/// <param name="sPassword">The password of the new user</param>

/// <param name="sGivenName">The given name of the new user</param>

/// <param name="sSurname">The surname of the new user</param>

/// <returns>returns the UserPrincipal object</returns>

public UserPrincipal CreateNewUser(string sOU, string sUserName, string
sPassword, string sGivenName, string sSurname)

{
it (!IsUserExisiting(sUserName))

Eureka Moment - https://wiki.plecko.hr/

Last update: 2019/10/31 09:05 windows:ad:ad.net https://wiki.plecko.hr/doku.php?id=windows:ad:ad.net

PrincipalContext oPrincipalContext = GetPrincipalContext(sOU

UserPrincipal oUserPrincipal new UserPrincipal(oPrincipalContext,
sUserName, sPassword, true /*Enabled or not*/

//User Log on Name
oUserPrincipal.UserPrincipalName = sUserName
oUserPrincipal.GivenName = sGivenName
oUserPrincipal.Surname sSurname
oUserPrincipal.Save

return oUserPrincipal
else

return GetUser(sUserName

/// <summary>

/// Deletes a user in Active Directory

/// </summary>

/// <param name="sUserName">The username you want to delete</param>
/// <returns>Returns true if successfully deleted</returns>

public bool DeleteUser(string sUserName

try
UserPrincipal oUserPrincipal = GetUser(sUserName
oUserPrincipal .Delete
return true

catch

return false

#endregion
#region Group Methods

/// <summary>

/// Creates a new group in Active Directory

/// </summary>

/// <param name="sOU">The OU location you want to save your new
Group</param>

/// <param name="sGroupName">The name of the new group</param>

/// <param name="sDescription">The description of the new group</param>

https://wiki.plecko.hr/ Printed on 2025/10/18 23:31

http://www.google.com/search?q=new+msdn.microsoft.com

2025/10/18 23:31 7/10 Managing everything in Active Directory via C# (Using System.DirectoryServices.AccountManagement)

/// <param name="oGroupScope">The scope of the new group</param>
/// <param name="bSecurityGroup">True is you want this group to be a
security group, false if you want this as a distribution group</param>
/// <returns>Retruns the GroupPrincipal object</returns>

GroupPrincipal CreateNewGroup(string sOU, string sGroupName, string
sDescription, GroupScope oGroupScope, bool bSecurityGroup

PrincipalContext oPrincipalContext = GetPrincipalContext(sOU

GroupPrincipal oGroupPrincipal new GroupPrincipal(oPrincipalContext,
sGroupName

oGroupPrincipal.Description sDescription
oGroupPrincipal.GroupScope = oGroupScope
oGroupPrincipal.IsSecurityGroup = bSecurityGroup
oGroupPrincipal.Save

oGroupPrincipal

/// <summary>
/// Adds the user for a given group
/// </summary>
/// <param name="sUserName">The user you want to add to a group</param>
/// <param name="sGroupName">The group you want the user to be added
in</param>
/// <returns>Returns true if successful</returns>
bool AddUserToGroup(string sUserName, string sGroupName

UserPrincipal oUserPrincipal = GetUser(sUserName
GroupPrincipal oGroupPrincipal GetGroup(sGroupName
oUserPrincipal oGroupPrincipal

IsUserGroupMember (sUserName, sGroupName

oGroupPrincipal .Members oUserPrincipal
oGroupPrincipal.Save

/// <summary>
/// Removes user from a given group
/// </summary>

Eureka Moment - https://wiki.plecko.hr/

http://www.google.com/search?q=new+msdn.microsoft.com

Last update: 2019/10/31 09:05 windows:ad:ad.net https://wiki.plecko.hr/doku.php?id=windows:ad:ad.net

/// <param name="sUserName">The user you want to remove from a group</param>

/// <param name="sGroupName">The group you want the user to be removed
from</param>

/// <returns>Returns true if successful</returns>
bool RemoveUserFromGroup(string sUserName, string sGroupName

UserPrincipal oUserPrincipal = GetUser(sUserName
GroupPrincipal oGroupPrincipal GetGroup(sGroupName
oUserPrincipal oGroupPrincipal

IsUserGroupMember (sUserName, sGroupName

oGroupPrincipal.Members oUserPrincipal
oGroupPrincipal.Save

/// <summary>

/// Checks if user is a member of a given group

/// </summary>

/// <param name="sUserName">The user you want to validate</param>

/// <param name="sGroupName">The group you want to check the membership of
the user</param>

/// <returns>Returns true if user is a group member</returns>
bool IsUserGroupMember(string sUserName, string sGroupName

UserPrincipal oUserPrincipal = GetUser(sUserName
GroupPrincipal oGroupPrincipal = GetGroup(sGroupName

oUserPrincipal oGroupPrincipal

oGroupPrincipal .Members.Contains (oUserPrincipal

/// <summary>
/// Gets a list of the users group memberships
/// </summary>

https://wiki.plecko.hr/ Printed on 2025/10/18 23:31

2025/10/18 23:31 9/10 Managing everything in Active Directory via C# (Using System.DirectoryServices.AccountManagement)

/// <param name="sUserName">The user you want to get the group

memberships</param>

/// <returns>Returns an arraylist of group memberships</returns>
ArrayList GetUserGroups(string sUserName

ArrayList myItems new ArraylList
UserPrincipal oUserPrincipal = GetUser(sUserName

PrincipalSearchResult<Principal> oPrincipalSearchResult
oUserPrincipal.GetGroups

Principal oResult oPrincipalSearchResult
myItems oResult.Name
myItems

/// <summary>
/// Gets a list of the users authorization groups
/// </summary>
/// <param name="sUserName">The user you want to get authorization
groups</param>
/// <returns>Returns an arraylist of group authorization
memberships</returns>
ArrayList GetUserAuthorizationGroups(string sUserName

ArrayList myItems new ArraylList
UserPrincipal oUserPrincipal = GetUser(sUserName

PrincipalSearchResult<Principal> oPrincipalSearchResult
oUserPrincipal.GetAuthorizationGroups

Principal oResult oPrincipalSearchResult
myItems oResult.Name
myItems

#endregion
#region Helper Methods

/// <summary>

/// Gets the base principal context

/// </summary>

/// <returns>Retruns the PrincipalContext object</returns>
PrincipalContext GetPrincipalContext

PrincipalContext oPrincipalContext new

Eureka Moment - https://wiki.plecko.hr/

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

Last update: 2019/10/31 09:05 windows:ad:ad.net https://wiki.plecko.hr/doku.php?id=windows:ad:ad.net

PrincipalContext (ContextType.Domain, sDomain, sDefaultOU,
ContextOptions.SimpleBind, sServiceUser, sServicePassword
oPrincipalContext

/// <summary>

/// Gets the principal context on specified 0OU

/// </summary>

/// <param name="sOU">The OU you want your Principal Context to run

on</param>

/// <returns>Retruns the PrincipalContext object</returns>
PrincipalContext GetPrincipalContext(string sOU

PrincipalContext oPrincipalContext new
PrincipalContext (ContextType.Domain, sDomain, sOU,
ContextOptions.SimpleBind, sServiceUser, sServicePassword

oPrincipalContext

#endregion

Now this is how to use it.

ADMethodsAccountManagement ADMethods new ADMethodsAccountManagement

UserPrincipal myUser = ADMethods.GetUser("Test"
myUser.GivenName "Given Name"

myUser.Surname “Surname"

myUser.MiddleName "Middle Name"
myUser.EmailAddress "Email Address"
myUser.Employeeld "Employee ID"

myUser.Save

From:
https://wiki.plecko.hr/ - Eureka Moment

Permanent link:
https://wiki.plecko.hr/doku.php?id=windows:ad:ad.net

Last update: 2019/10/31 09:05

https://wiki.plecko.hr/ Printed on 2025/10/18 23:31

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
https://wiki.plecko.hr/
https://wiki.plecko.hr/doku.php?id=windows:ad:ad.net

	Managing everything in Active Directory via C# (Using System.DirectoryServices.AccountManagement)
	Validate Methods
	Search Methods
	User Account Methods
	Group Methods
	Helper Methods

